integrate 1/(sinx + cosx) dx
integrate 1/(sinx + cosx) dx
maybenow.com
∫ [1 /(cosx + sinx)] dx = multiply and divide the integrand by (cosx - sinx): ∫ {(cosx - sinx) /[(cosx + sinx)(cosx - sinx)]} dx = expand the denominator: ∫ [(cosx - sinx) /(cos²x - sin²x)] dx = break it up into: ∫ [cosx /(cos²x - sin²x)] dx + ∫ [- sinx /(cos²x - sin²x)] dx = rewrite the first denominator in terms of sinx and the second one in terms of cosx: ∫ {cosx /[(1 - sin²x) - sin²x]} dx + ∫ {- sinx /[cos²x - (1 - cos²x)]} dx = ∫ [cosx /(1 - sin²x - sin²x)] dx + ∫ [- sinx /(cos²x - 1 + cos²x)] dx = ∫ [cosx /(1 - 2sin²x)] dx + ∫ [- sinx /(2cos²x - 1)] dx (#) let us solve the first integral substituting sinx = t hence (differentiating both sides) d(sinx) = dt → cosx dx = dt, yielding: ∫ cosx dx /(1 - 2sin²x) = ∫ dt /(1 - 2t²) = factor the denominator as a difference of squares: ∫ dt /{1 - [(√2)t]²} = ∫ dt /{[1 - (√2)t][1 + (√2)t]} = decompose it into partial fractions: 1 /{[1 - (√2)t][1 + (√2)t]} = A/[1 - (√2)t] + B/[1 + (√2)t] 1 /{[1 - (√2)t][1 + (√2)t]} = {A[1 + (√2)t] + B[1 - (√2)t]} /{[1 - (√2)t][1 + (√2)t]} 1 = A + (√2)At + B - (√2)Bt 1 = (√2)(A - B)t + (A + B) hence: | (√2)(A - B) = 0 | A + B = 1 | A = B | B + B = 1 | A = 1/2 | B = 1/2 yielding: 1 /{[1 - (√2)t][1 + (√2)t]} = A/[1 - (√2)t] + B/[1 + (√2)t] = (1/2)/[1 - (√2)t] + (1/2)/[1 + (√2)t] thus the integral becomes: ∫ [1 /(1 - 2t²)+ dt = ∫ {{(1/2)/[1 - (√2)t]} + {(1/2)/[1 + (√2)t]}} dt = break it up pulling constants out: (1/2) ∫ {1 /[1 - (√2)t]} dt + (1/2) ∫ {1 /[1 + (√2)t]} dt = divide and multiply the first integral by (-√2), and the second one by (√2) so as to make each numerator the derivative of the respective denominator: (1/2)(-1/√2) ∫ {(-√2) /[1 - (√2)t]} dt + (1/2)(1/√2) ∫ {(√2) /[1 + (√2)t]} dt = [- 1/(2√2)] ∫ d[1 - (√2)t] /[1 - (√2)t]} + [1/(2√2)] ∫ d[1 + (√2)t] /[1 + (√2)t] = [- 1/(2√2)] ln |1 - (√2)t| + [1/(2√2)] ln |1 + (√2)t| + C = [1/(2√2)] [ln |1 + (√2)t| - ln |1 - (√2)t|] + C = recalling logarithms properties, [1/(2√2)] ln |[1 + (√2)t] /[1 - (√2)t]| + C thus, substituiting back sinx for t, you have: ∫ [cosx /(1 - 2sin²x)] dx = [1/(2√2)] ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + C (##) the solution of the latter integral (see expression (#) above) is similar: ∫ [- sinx /(2cos²x - 1)] dx = let cosx = u → d(cosx) = du → - sinx dx = du ∫ [- sinx /(2cos²x - 1)] dx = ∫ du /(2u² - 1) = ∫ du /[(√2)u]² - 1] = ∫ du /{[(√2)u - 1][(√2)u + 1]} partial fraction decomposition 1 /{[(√2)u - 1][(√2)u + 1]} = A/[(√2)u - 1] + B/[(√2)u + 1] 1 /{[(√2)u - 1][(√2)u + 1]} = {A[(√2)u + 1] + B[(√2)u - 1]} /{[(√2)u - 1][(√2)u + 1]} 1 = A[(√2)u + 1] + B[(√2)u - 1] 1 = (√2)Au + A + (√2)Bu - B 1 = (√2)(A + B)u + (A - B) | (√2)(A + B) = 0 | A - B = 1 | A = - B | - B - B = 1 | A = 1/2 | B = - 1/2 yielding: 1 /{[(√2)u - 1][(√2)u + 1]} = A/[(√2)u - 1] + B/[(√2)u + 1] = (1/2)/[(√2)u - 1] - (1/2)/[(√2)u + 1] hence: ∫ du /(2u² - 1) = ∫ {{(1/2)/[(√2)u - 1]} - {(1/2)/[(√2)u + 1]}} du = (1/2) ∫ du /[(√2)u - 1] - (1/2) ∫ du /[(√2)u + 1] = dividing and multiplying by √2, (1/2)(1/√2) ∫ (√2) du /[(√2)u - 1] - (1/2)(1/√2) ∫ (√2) du /[(√2)u + 1] = [1/(2√2)] ∫ d[(√2)u - 1] /[(√2)u - 1] - [1/(2√2)] ∫ d[(√2)u + 1] /[(√2)u + 1] = [1/(2√2)] ln |(√2)u - 1| - [1/(2√2)] ln |(√2)u + 1| + C = [1/(2√2)] [ln |(√2)u - 1| - ln |(√2)u + 1|] + C = [1/(2√2)] ln |[(√2)u - 1] /[(√2)u + 1]| + C = substituiting back cosx for u, ∫ [- sinx /(2cos²x - 1)] dx = [1/(2√2)] ln |[(√2)cosx - 1] /[(√2)cosx + 1]| + C (###) thus, plugging this and the previous (###) result into the above (#) expression, you have: ∫ [cosx /(1 - 2sin²x)] dx + ∫ [- sinx /(2cos²x - 1)] dx = [1/(2√2)] ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + [1/(2√2)] ln |[(√2)cosx - 1] /[(√2)cosx + 1]| + C = [1/(2√2)] {ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + ln |[(√2)cosx - 1] /[(√2)cosx + 1]|} + C = owing to logarithm properties, [1/(2√2)] ln |{[1 + (√2)sinx] /[1 - (√2)sinx]}{[(√2)cosx - 1] /[(√2)cosx + 1]|} + C thus, in conclusion: ∫ [1 /(cosx + sinx)] dx = [1/(2√2)] ln |{[1 + (√2)sinx][(√2)cosx - 1]} /{[1 - (√2)sinx][(√2)cosx + 1]}| + C
Zero Comments
ReplyDeleteYou are brilliant
It was given to us to solve it in 15 minutes
nobody could solve it.
What are the comments on the 15 minutes on a question or equation like this???
It is Baghdad University, Electrical engineering Dept.
BR
instead of doing this there 's another short method
Delete1 / (sin x + cos x) ? Then
sin x + cos x = sqrt 2 sin ( x + 45)
Hence Integ 1 / (sin x +cos x) dx = sqrt 2 Integral cosec (x + 45)
= - sqrt 2 ln I csc ( x+ 45) + cot (x + 45) I + C
Its a tough question.. cant be solved if u dont know the hint to multiply (cosx-sinx) in numerator and denominator
ReplyDeleteI have found out an another result form in the Wolfram Mathematica Online Integrator. See: http://www.facebook.com/photo.php?fbid=226946374025071&set=a.226946367358405.75292.217757241610651&type=1&theater
ReplyDeleteWolfram Mathematica Online Integrator: http://integrals.wolfram.com/index.jsp
See more: http://www.numberempire.com/integralcalculator.php?function=1%2F%28cos%28x%29%2Bsin%28x%29%29&var=x&answers=
ReplyDeleteFunction 1/(cos(x)+sin(x))
ReplyDelete∫fdx =(log(sin(x)+(sqrt(2)-1)*cos(x)+ sqrt(2)-1)-log(sin(x)+(-sqrt(2)-1)*cos(x) -sqrt(2)-1))/sqrt(2)
http://tutorstate.blogspot.com/2011/10/do-integral-of-1sinxcosx-with-respect.html#links
ReplyDeletesin x + cos x = sqrt 2 sin ( x + 45)
ReplyDeleteHence Integ 1/(sin x +cos x)dx
= sqrt(2) * Integral cosec(x+45)
= -sqrt(2)*ln|csc(x+45)+cot(x+45)| + C
Instead Of Partial Fractions , You Could Have Had Used These Formula
ReplyDelete∫dx/(x^2 - a^2) = (1/2a)(log (x-a)/(x+a)) + c
Would Have Had Become Way Simpler !
talent
ReplyDeleteHow do we integrate 1/((sinx)^5+(cosx)^5)
ReplyDeletesin x + cos x = sqrt 2 sin ( x + 45)
ReplyDeleteHence Integ 1/(sin x +cos x)dx
= sqrt(2) * Integral cosec(x+45)
= sqrt(2)*ln|csc(x+pie/4)+cot(x+pie/4)| + C
=sqrt(2)log (tanx/2+pie/8)+c
plz solve integration of 1/((sinx)^3+(cosx)^3)
ReplyDeleteUse - (a^3 + b^3) identity...it goes the same way
DeleteGreat post. Your post is very beneficial for me. Thank you for consistently providing fascinating and valuable information about integrate 1/(sinx + cosx) dx to your readers; your blog is doing very well. Meanwhile, you can look at the business coursework help which was extremely useful to me and other readers.
ReplyDeleteAdana
ReplyDeleteElazığ
Kayseri
Şırnak
Antep
FHİLHY
https://titandijital.com.tr/
ReplyDeleteamasya parça eşya taşıma
adıyaman parça eşya taşıma
hatay parça eşya taşıma
giresun parça eşya taşıma
C4Nİ6M
aydın evden eve nakliyat
ReplyDeleteyozgat evden eve nakliyat
kırklareli evden eve nakliyat
antep evden eve nakliyat
konya evden eve nakliyat
1FF84N
475A4
ReplyDeleteTunceli Lojistik
Keçiören Parke Ustası
Iğdır Evden Eve Nakliyat
Urfa Şehir İçi Nakliyat
Rize Şehir İçi Nakliyat
Bayburt Şehirler Arası Nakliyat
Çerkezköy Çilingir
Bitlis Şehirler Arası Nakliyat
Bitlis Evden Eve Nakliyat
28BD4
ReplyDeletebinance referans kodu
866C5
ReplyDeletebatman canlı sohbet ücretsiz
sohbet
görüntülü sohbet uygulama
yabancı sohbet
sesli sohbet uygulamaları
bartın ücretsiz görüntülü sohbet uygulamaları
edirne canlı görüntülü sohbet uygulamaları
kars görüntülü sohbet uygulama
karaman parasız görüntülü sohbet
3501B
ReplyDeleteBitcoin Nasıl Alınır
Kripto Para Nasıl Üretilir
Binance Ne Kadar Komisyon Alıyor
Bitcoin Çıkarma
Binance Para Kazanma
Kripto Para Nedir
Facebook Takipçi Hilesi
Twitter Trend Topic Hilesi
Casper Coin Hangi Borsada
99D3A
ReplyDeleteSnapchat Takipçi Satın Al
Linkedin Takipçi Hilesi
Tesla Coin Hangi Borsada
Expanse Coin Hangi Borsada
Binance'de Kaldıraç Var mı
Floki Coin Hangi Borsada
Onlyfans Beğeni Hilesi
Facebook Beğeni Hilesi
Bitcoin Kazanma
BBABE
ReplyDeletekeçi sütü bal sabunu
4g mobil proxy
en az komisyon alan kripto borsası
toptan sabun
4g mobil
güvenilir kripto para siteleri
bitexen
referans kodu
kantaron sabunu
8EE51
ReplyDeletereferans kodu binance
bitcoin hesabı nasıl açılır
türk kripto telegram grupları
referans kimliği
mexc
kripto telegram
okex
canlı sohbet ücretsiz
toptan sabun
64C85
ReplyDeletecointiger
bybit
referans kod
kraken
kripto para telegram grupları
coin nasıl alınır
binance ne demek
kucoin
bybit
3EAC3
ReplyDeletegörüntülü show