Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика

Thursday, November 4, 2010

integrate 1/(sinx + cosx) dx

integrate 1/(sinx + cosx) dx


integrate 1/(sinx + cosx) dx
maybenow.com
∫ [1 /(cosx + sinx)] dx = multiply and divide the integrand by (cosx - sinx): ∫ {(cosx - sinx) /[(cosx + sinx)(cosx - sinx)]} dx = expand the denominator: ∫ [(cosx - sinx) /(cos²x - sin²x)] dx = break it up into: ∫ [cosx /(cos²x - sin²x)] dx + ∫ [- sinx /(cos²x - sin²x)] dx = rewrite the first denominator in terms of sinx and the second one in terms of cosx: ∫ {cosx /[(1 - sin²x) - sin²x]} dx + ∫ {- sinx /[cos²x - (1 - cos²x)]} dx = ∫ [cosx /(1 - sin²x - sin²x)] dx + ∫ [- sinx /(cos²x - 1 + cos²x)] dx = ∫ [cosx /(1 - 2sin²x)] dx + ∫ [- sinx /(2cos²x - 1)] dx (#) let us solve the first integral substituting sinx = t hence (differentiating both sides) d(sinx) = dt → cosx dx = dt, yielding: ∫ cosx dx /(1 - 2sin²x) = ∫ dt /(1 - 2t²) = factor the denominator as a difference of squares: ∫ dt /{1 - [(√2)t]²} = ∫ dt /{[1 - (√2)t][1 + (√2)t]} = decompose it into partial fractions: 1 /{[1 - (√2)t][1 + (√2)t]} = A/[1 - (√2)t] + B/[1 + (√2)t] 1 /{[1 - (√2)t][1 + (√2)t]} = {A[1 + (√2)t] + B[1 - (√2)t]} /{[1 - (√2)t][1 + (√2)t]} 1 = A + (√2)At + B - (√2)Bt 1 = (√2)(A - B)t + (A + B) hence: | (√2)(A - B) = 0 | A + B = 1 | A = B | B + B = 1 | A = 1/2 | B = 1/2 yielding: 1 /{[1 - (√2)t][1 + (√2)t]} = A/[1 - (√2)t] + B/[1 + (√2)t] = (1/2)/[1 - (√2)t] + (1/2)/[1 + (√2)t] thus the integral becomes: ∫ [1 /(1 - 2t²)+ dt = ∫ {{(1/2)/[1 - (√2)t]} + {(1/2)/[1 + (√2)t]}} dt = break it up pulling constants out: (1/2) ∫ {1 /[1 - (√2)t]} dt + (1/2) ∫ {1 /[1 + (√2)t]} dt = divide and multiply the first integral by (-√2), and the second one by (√2) so as to make each numerator the derivative of the respective denominator: (1/2)(-1/√2) ∫ {(-√2) /[1 - (√2)t]} dt + (1/2)(1/√2) ∫ {(√2) /[1 + (√2)t]} dt = [- 1/(2√2)] ∫ d[1 - (√2)t] /[1 - (√2)t]} + [1/(2√2)] ∫ d[1 + (√2)t] /[1 + (√2)t] = [- 1/(2√2)] ln |1 - (√2)t| + [1/(2√2)] ln |1 + (√2)t| + C = [1/(2√2)] [ln |1 + (√2)t| - ln |1 - (√2)t|] + C = recalling logarithms properties, [1/(2√2)] ln |[1 + (√2)t] /[1 - (√2)t]| + C thus, substituiting back sinx for t, you have: ∫ [cosx /(1 - 2sin²x)] dx = [1/(2√2)] ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + C (##) the solution of the latter integral (see expression (#) above) is similar: ∫ [- sinx /(2cos²x - 1)] dx = let cosx = u → d(cosx) = du → - sinx dx = du ∫ [- sinx /(2cos²x - 1)] dx = ∫ du /(2u² - 1) = ∫ du /[(√2)u]² - 1] = ∫ du /{[(√2)u - 1][(√2)u + 1]} partial fraction decomposition 1 /{[(√2)u - 1][(√2)u + 1]} = A/[(√2)u - 1] + B/[(√2)u + 1] 1 /{[(√2)u - 1][(√2)u + 1]} = {A[(√2)u + 1] + B[(√2)u - 1]} /{[(√2)u - 1][(√2)u + 1]} 1 = A[(√2)u + 1] + B[(√2)u - 1] 1 = (√2)Au + A + (√2)Bu - B 1 = (√2)(A + B)u + (A - B) | (√2)(A + B) = 0 | A - B = 1 | A = - B | - B - B = 1 | A = 1/2 | B = - 1/2 yielding: 1 /{[(√2)u - 1][(√2)u + 1]} = A/[(√2)u - 1] + B/[(√2)u + 1] = (1/2)/[(√2)u - 1] - (1/2)/[(√2)u + 1] hence: ∫ du /(2u² - 1) = ∫ {{(1/2)/[(√2)u - 1]} - {(1/2)/[(√2)u + 1]}} du = (1/2) ∫ du /[(√2)u - 1] - (1/2) ∫ du /[(√2)u + 1] = dividing and multiplying by √2, (1/2)(1/√2) ∫ (√2) du /[(√2)u - 1] - (1/2)(1/√2) ∫ (√2) du /[(√2)u + 1] = [1/(2√2)] ∫ d[(√2)u - 1] /[(√2)u - 1] - [1/(2√2)] ∫ d[(√2)u + 1] /[(√2)u + 1] = [1/(2√2)] ln |(√2)u - 1| - [1/(2√2)] ln |(√2)u + 1| + C = [1/(2√2)] [ln |(√2)u - 1| - ln |(√2)u + 1|] + C = [1/(2√2)] ln |[(√2)u - 1] /[(√2)u + 1]| + C = substituiting back cosx for u, ∫ [- sinx /(2cos²x - 1)] dx = [1/(2√2)] ln |[(√2)cosx - 1] /[(√2)cosx + 1]| + C (###) thus, plugging this and the previous (###) result into the above (#) expression, you have: ∫ [cosx /(1 - 2sin²x)] dx + ∫ [- sinx /(2cos²x - 1)] dx = [1/(2√2)] ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + [1/(2√2)] ln |[(√2)cosx - 1] /[(√2)cosx + 1]| + C = [1/(2√2)] {ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + ln |[(√2)cosx - 1] /[(√2)cosx + 1]|} + C = owing to logarithm properties, [1/(2√2)] ln |{[1 + (√2)sinx] /[1 - (√2)sinx]}{[(√2)cosx - 1] /[(√2)cosx + 1]|} + C thus, in conclusion: ∫ [1 /(cosx + sinx)] dx = [1/(2√2)] ln |{[1 + (√2)sinx][(√2)cosx - 1]} /{[1 - (√2)sinx][(√2)cosx + 1]}| + C

36 comments:

  1. Zero Comments
    You are brilliant
    It was given to us to solve it in 15 minutes
    nobody could solve it.
    What are the comments on the 15 minutes on a question or equation like this???
    It is Baghdad University, Electrical engineering Dept.

    BR

    ReplyDelete
    Replies
    1. instead of doing this there 's another short method
      1 / (sin x + cos x) ? Then
      sin x + cos x = sqrt 2 sin ( x + 45)

      Hence Integ 1 / (sin x +cos x) dx = sqrt 2 Integral cosec (x + 45)

      = - sqrt 2 ln I csc ( x+ 45) + cot (x + 45) I + C

      Delete
  2. Its a tough question.. cant be solved if u dont know the hint to multiply (cosx-sinx) in numerator and denominator

    ReplyDelete
  3. I have found out an another result form in the Wolfram Mathematica Online Integrator. See: http://www.facebook.com/photo.php?fbid=226946374025071&set=a.226946367358405.75292.217757241610651&type=1&theater

    Wolfram Mathematica Online Integrator: http://integrals.wolfram.com/index.jsp

    ReplyDelete
  4. See more: http://www.numberempire.com/integralcalculator.php?function=1%2F%28cos%28x%29%2Bsin%28x%29%29&var=x&answers=

    ReplyDelete
  5. Function 1/(cos(x)+sin(x))
    ∫fdx =(log(sin(x)+(sqrt(2)-1)*cos(x)+ sqrt(2)-1)-log(sin(x)+(-sqrt(2)-1)*cos(x) -sqrt(2)-1))/sqrt(2)

    ReplyDelete
  6. http://tutorstate.blogspot.com/2011/10/do-integral-of-1sinxcosx-with-respect.html#links

    ReplyDelete
  7. sin x + cos x = sqrt 2 sin ( x + 45)

    Hence Integ 1/(sin x +cos x)dx
    = sqrt(2) * Integral cosec(x+45)

    = -sqrt(2)*ln|csc(x+45)+cot(x+45)| + C

    ReplyDelete
  8. Instead Of Partial Fractions , You Could Have Had Used These Formula
    ∫dx/(x^2 - a^2) = (1/2a)(log (x-a)/(x+a)) + c
    Would Have Had Become Way Simpler !

    ReplyDelete
  9. How do we integrate 1/((sinx)^5+(cosx)^5)

    ReplyDelete
  10. sin x + cos x = sqrt 2 sin ( x + 45)

    Hence Integ 1/(sin x +cos x)dx
    = sqrt(2) * Integral cosec(x+45)

    = sqrt(2)*ln|csc(x+pie/4)+cot(x+pie/4)| + C
    =sqrt(2)log (tanx/2+pie/8)+c

    ReplyDelete
  11. plz solve integration of 1/((sinx)^3+(cosx)^3)

    ReplyDelete
    Replies
    1. Use - (a^3 + b^3) identity...it goes the same way

      Delete
  12. Great post. Your post is very beneficial for me. Thank you for consistently providing fascinating and valuable information about integrate 1/(sinx + cosx) dx to your readers; your blog is doing very well. Meanwhile, you can look at the business coursework help which was extremely useful to me and other readers.

    ReplyDelete
  13. FenBilimleri.net, fen bilimleri alanında öğrencilere ve öğretmenlere özgün, güncel ve erişilebilir eğitim içerikleri sunan bir eğitim platformudur. Platformumuz, öğrencilerin ders başarısını artırmayı ve öğretmenlerin kaliteli materyallere hızlı erişmesini sağlamayı amaçlar.

    5–8. sınıf düzeyine uygun fen bilimleri net testleri, konu anlatımları, etkinlikler, çalışma kağıtları ve eğitici oyunlar sitede yer alır. İçerikler, MEB müfredatına hâkim öğretmenler tarafından hazırlanmakta ve düzenli olarak güncellenmektedir.

    Site, kullanıcılarına ücretsiz ve güvenli bir deneyim sunar; PDF formatında indirilebilir materyaller ve eleştirel düşünmeyi destekleyen açık uçlu sorular öğrencilerin başarı yolculuğunu güçlendirir.

    ReplyDelete

http://tutorstate.blogspot.com/